Ageing, originaly Wikipedia article

Ageing in humans refers to a multidimensional process of physical, psychological, and social change. Some dimensions of ageing grow and expand over time, while others decline. Reaction time, for example, may slow with age, while knowledge of world events and wisdom may expand. Research shows that even late in life potential exists for physical, mental, and social growth and development. Ageing is an important part of all human societies reflecting the biological changes that occur, but also reflecting cultural and societal conventions. Age is usually measured in full years — and months for young children. A person's birthday is often an important event. Roughly 100,000 people worldwide die each day of age-related causes.

The term "ageing" is somewhat ambiguous. Distinctions may be made between "universal ageing" (age changes that all people share) and "probabilistic ageing" (age changes that may happen to some, but not all people as they grow older, such as the onset of type two diabetes). Chronological ageing, referring to how old a person is, is arguably the most straightforward definition of ageing and may be distinguished from "social ageing" (society's expectations of how people should act as they grow older) and "biological ageing" (an organism's physical state as it ages). There is also a distinction between "proximal ageing" (age-based effects that come about because of factors in the recent past) and "distal ageing" (age-based differences that can be traced back to a cause early in person's life, such as childhood poliomyelitis).

Differences are sometimes made between populations of elderly people. Divisions are sometimes made between the young old (65–74), the middle old (75–84) and the oldest old (85+). However, problematic in this is that chronological age does not correlate perfectly with functional age, i.e. two people may be of the same age, but differ in their mental and physical capacities. Each nation, government and non-government organization has different ways of classifying age.

Population ageing is the increase in the number and proportion of older people in society. Population ageing has three possible causes: migration, longer life expectancy (decreased death rate), and decreased birth rate. Ageing has a significant impact on society. Young people tend to commit most crimes, they are more likely to push for political and social change, to develop and adopt new technologies, and to need education. Older people have different requirements from society and government as opposed to young people, and frequently differing values as well. Older people are also far more likely to vote, and in many countries the young are forbidden from voting. Thus, the aged have comparatively more political influence.
Senescence

In biology, senescence is the state or process of ageing.
Cellular senescence is a phenomenon where isolated cells demonstrate a limited ability to divide in culture (the Hayflick Limit, discovered by Leonard Hayflick in 1961), while organismal senescence is the ageing of organisms. After a period of near perfect renewal (in humans, between 20 and 35 years of age), organismal senescence is characterized by the declining ability to respond to stress, increasing homeostatic imbalance and increased risk of disease. This currently irreversible series of changes inevitably ends in death. Some researchers (specifically biogerontologists) are treating ageing as a disease. As genes that have an effect on ageing are discovered, ageing is increasingly being regarded in a similar fashion to other geneticly influenced "conditions", potentially "treatable."

Indeed, ageing is not an unavoidable property of life. Instead, it is the result of a genetic program. Numerous species show very low signs of ageing ("negligible senescence'), the best known being trees like the bristlecone pine (however Dr. Hayflick states that the bristlecone pine has no cells older than 30 years), fish like the sturgeon and the rockfish, invertebrates like the quahog or sea anemone.

In humans and other animals, cellular senescence has been attributed to the shortening of telomeres with each cell cycle; when telomeres become too short, the cells die. The length of telomeres is therefore the "molecular clock," predicted by Hayflick.

Telomere length is maintained in immortal cells (e.g. germ cells and keratinocyte stem cells, but not other skin cell types) by the telomerase enzyme. In the laboratory, mortal cell lines can be immortalized by the activation of their telomerase gene, present in all cells but active in few cell types. Cancerous cells must become immortal to multiply without limit. This important step towards carcinogenesis implies, in 85% of cancers, the reactivation of their telomerase gene by mutation. Since this mutation is rare, the telomere "clock" can be seen as a protective mechanism against cancer.[5] Research has shown that the clock must be located in the nucleus of each cell and there have been reports that the longevity clock might be located in genes on either the first or fourth chromosome of the twenty-three pairs of human chromosomes.

Other genes are known to affect the ageing process, the sirtuin family of genes have been shown to have a significant effect on the lifespan of yeast and nematodes. Over-expression of the RAS2 gene increases lifespan in yeast substantially.
Banner 4 125x125button
Picture
Tava Tea
 
Banner 4 125x125button
Picture
Pure AcaiBerry
Picture
HealthSpark
Picture
My US Address
In addition to genetic ties to lifespan, diet has been shown to substantially affect lifespan in many animals. Specifically, caloric restriction (that is, restricting calories to 30-50% less than an ad libitum animal would consume, while still maintaining proper nutrient intake), has been shown to increase lifespan in mice up to 50%. Caloric restriction works on many other species beyond mice (including species as diverse as yeast and Drosophila), and appears (though the data is not conclusive) to increase lifespan in primates according to a study done on Rhesus monkeys at the National Institute of Health (US), although the increase in lifespan is only notable if the caloric restriction is started early in life. Since, at the molecular level, age is counted not as time but as the number of cell doublings, this effect of calorie reduction could be mediated by the slowing of cellular growth and, therefore, the lengthening of the time between cell divisions.

Drug companies are currently searching for ways to mimic the lifespan-extending effects of caloric restriction without having to severely reduce food consumption.

In his book, 'How and Why We Age', Dr. Hayflick notes a contradiction to the caloric restriction longevity increase theory for humans, noting that data from the Baltimore Longitudinal Study of Ageing show that being thin does not favour longevity.

Dividing the lifespan

Historically, the lifespan of humans is divided into Eight ages; because biological changes are slow moving and vary from person to person, arbitrary dates are usually set to mark periods of life. In some cultures the divisions given below are quite varied.

In the USA, adulthood legally begins at the age of eighteen, while old age is considered to begin at the age of legal retirement (approximately 65).